Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Huan Jing Ke Xue ; 42(10): 4641-4649, 2021 Oct 08.
Artigo em Chinês | MEDLINE | ID: mdl-34581106

RESUMO

To determine the differences in emissions among different types of coatings, such as solvent-based, water-based, solvent-based ultra-violet(UV), water-based UV, and powder coatings, representative furniture manufacturing companies were selected for analysis. The emission concentrations and compositional characteristics of volatile organic compounds(VOCs) in different types of coatings were compared and studied. The ozone formation potential(OFP) and secondary organic aerosol formation potential(SOAFP) of the different types of coatings were also analyzed. Solvent-based coatings has higher TVOC concentrations, OFPs, and SOAFPs than water-based, solvent-based UV, water-based UV, and powder coatings. The concentrations and composition of VOCs emitted from the different types of coatings were also different. The main VOC groups of the solvent-based and solvent-based UV coatings were aromatic hydrocarbons and oxygenated volatile organic compounds(OVOCs). Specifically, the proportions of aromatic hydrocarbons are 41.91%-60.67% and 42.51%-43.00%, respectively, and the proportions of OVOCs were 24.75%-41.29% and 41.34%-43.21%, respectively. OVOCs accounted for the highest proportion of VOCs in the water-based, water-based UV, and powder coatings, at 54.02%-62.10%, 55.23%-64.81%, and 42.98%-46.45%, respectively. The major VOC compound of the solvent-based coatings was styrene(14.68%), and the main component of the water-based coatings was methylal(14.61%). The main species of VOCs from the solvent-based UV and water-based UV coatings were butyl acetate(15.36% and 20.56%, respectively). The most abundant species from the powder coatings was ethyl 3-ethoxy propionate(20.19%). Aromatic hydrocarbons were the most important contributor to the OFP of the solvent-based and solvent-based UV coatings, accounting for 79.84% and 80.32%, respectively. Aromatic hydrocarbons(51.48% and 36.71%) and OVOCs(42.30% and 41.03%) were the major contributors to the OFP of the water-based and water-based UV coatings, respectively. Aromatic hydrocarbons(43.46%), OVOCs(28.06%), and olefins(25.24%) were the main factors affecting the OFP of the powder coatings. Aromatic hydrocarbons dominate the SOAFP of solvent-based, water-based, solvent-based UV, water-based UV, and powder coatings, accounting for more than 99%.


Assuntos
Poluentes Atmosféricos , Ozônio , Compostos Orgânicos Voláteis , Poluentes Atmosféricos/análise , China , Meio Ambiente , Monitoramento Ambiental , Decoração de Interiores e Mobiliário , Ozônio/análise , Compostos Orgânicos Voláteis/análise
2.
Huan Jing Ke Xue ; 40(12): 5240-5249, 2019 Dec 08.
Artigo em Chinês | MEDLINE | ID: mdl-31854594

RESUMO

The furniture manufacturing industry is a typical industry with high pollution, low added value, relatively outdated technology and low levels of pollution control. The process of furniture manufacturing uses a large number of paints and adhesives, which emit a great quantity of volatile organic compounds (VOCs). The furniture manufacturing industry is a key industry for the control of VOCs in China. The VOCs emission characteristics and environmental impact of the furniture manufacturing industry has been studied in this work, which could be helpful for the Chinese government when formulating VOCs pollution control policy for this industry. In this study, a typical furniture manufacturing enterprise was chosen as the object. The emission concentration level and source profile of VOCs in a typical enterprise was obtained, and an assessment of the environmental impact of furniture manufacturing was developed. The results showed that the concentration of VOCs in the workshop ranged from 9.18 to 181.58 mg·m-3, the concentration of VOCs in the stack was 30.64-155.94 mg·m-3, and the treatment efficiency was 7.43%-67.14%. The main species of VOCs in the workshop were aromatic hydrocarbons, esters, and aldehydes and ketones; the main species of VOCs in the stack are esters and aromatic hydrocarbons, followed by alkanes, and the main VOCs in the industry are sec-butyl acetate, toluene, m-xylene, methylal and ethylbenzene. The average ozone generation potential (OFP) of workshop and stack VOCs was 258.01 and 289.14 mg·m-3, respectively, and the average secondary organic aerosol generation potential (SOAFP) of workshop and stack VOCs was 148.66 and 165.31 mg·m-3, respectively. The most important contribution to the OFP and SOAFP in each emission sector is aromatic hydrocarbons. The OFP and SOAFP in the edge-sealing workshop are large and the VOCs should be controlled. The main malodorous substances at the shop boundary are sec-butyl acetate, m-xylene, butyl acetate, p-xylene, ethylbenzene, 1-ethyl-3-methylbenzene, o-xylene, and toluene; the VOCs at the factory boundary produce almost no odor pollution. Targeted enhanced control of aromatic hydrocarbons and esters should be adopted to achieve effective emission reduction of VOCs in furniture manufacturing.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...